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bstract

This paper describes a novel method of modelling an energy store used to match the power output from a wind turbine and a solar PV
rray to a varying electrical load. The model estimates the fraction of time that an energy store spends full or empty. It can also estimate the
ower curtailed when the store is full and the unsatisfied demand when the store is empty. The new modelling method has been validated
gainst time–stepping methods and shows generally good agreement over a wide range of store power ratings, store efficiencies, wind turbine

apacities and solar PV capacities.

Example results are presented for a system with 1 MW of wind power capacity, 2 MW of photovoltaic capacity, an energy store of 75%
fficiency and a range of loads from 0 to 3 MW average.

2005 Elsevier B.V. All rights reserved.
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. Introduction

Wind power is currently the fastest growing renewable
nergy source worldwide with photovoltaics (PV) running a
lose second, albeit from a lower base. Wind capacity, and
o a lesser extent generation from PV pose challenges for
rid connection and network operation. Wind turbine output
epends directly on wind speed and varies across a wide range
f time scales. PV output is variable but to a greater extent
redictable.

The computational method developed relies upon spectral
escription of the wind speed and solar radiation together
ith a standard power curve for the wind turbines and well-
efined PV array characteristics. The electricity load, based

n data from Leicester, is calculated as a function of hour of
he day, type of day (working day or non-working day) and

onth of year. An example for a weekday in December is
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hown in Fig. 1, where it is compared with the National Grid
ypical winter demand profile measured on 3 December 2002
nd approximately scaled to the same average [1].

Understandably, the Leicester load data exhibits greater
eaks in the morning and evening than the national average
rofile, reflecting reduced smoothing due to diversity and
ossibly a greater proportion of domestic consumers. Never-
heless, the profiles are similar.

Conventional electricity systems can accommodate at
east 5% of wind powered generation, and probably more,
ith few adaptations [2]. The variability of small amounts
f wind or solar power can be accommodated in the same
ay as variations in electrical load, by varying the elec-

rical generation from fossil fuel generators. However, if
enewable sources are to play their part in a 60% reduc-
ion in carbon dioxide emissions, the fraction of intermit-

ent renewable generation will increase well above 5%. This
ill require a radical new approach to electrical power sys-

em management and a potentially important role for energy
torage.



944 J.P. Barton, D.G. Infield / Journal of Power Sources 162 (2006) 943–948

i
a

2

s
o
t
c
i
a
l
t
d

a
s
f
d
i
a
e

i
s
a
w
e
I
a
n

n
p
f
d

t

F
b

d
a

a
t
a
s
o

2

u
w
t
i
t

2

v
m
p
at a given location. Data has been analysed for a well-
documented location, The Rutherford Appleton Laboratory
(RAL) in Oxfordshire, UK (Fig. 3).
Fig. 1. December weekday electricity load profiles.

In the approach presented here the energy storage system
s represented as a series of filters in the spectral domain
pplied to the solar and wind variation spectra.

. System modelling

The energy rating of a store increases with the time-
cale of charging and discharging cycles [3]. Energy storage
ptions always become more expensive as the time scale (a
ypical charge–discharge cycle) of that storage increases. A
ost-effective system may therefore have a small store size
n energy capacity terms, but with a relatively large renew-
ble energy power surplus and hence storage power rating (at
east as far as charging goes). Only a mathematical model of
he system can determine the optimal design with any confi-
ence.

Energy systems including wind power, solar power, loads
nd energy storage can be extremely complex to model. Wind
peed, solar irradiance and loads all vary on all time scales
rom seconds to years. The state-of-charge of an energy store
epends on the history of energy supply and demand and
ts own operating characteristics. Earlier work [3] developed
novel method of calculating energy flows to and from an

nergy store, but made only a crude attempt to size the store.
This paper extends the methodology presented in [3] to

nclude an improved calculation of store size and a more
ophisticated spectral analysis of the intermittency of renew-
ble sources. The method simulates electrical power systems
ith large fractions of intermittent renewable generation and

nergy storage. It does not require time series of weather data.
nstead it uses spectral analysis of time series de-trended to
ccount for deterministic cyclic variations (seasonal and diur-
al) together with relevant probability distributions.

Some loss of accuracy may be apparent because of the
ecessary simplifying assumptions, but it is expected that the
robabilistic method will provide a fast and practical tool

or feasibility studies, early system design, and investment
ecisions.

Time–step simulation remains useful, however, as a check
hat the design will perform as intended, to fine-tune the F
ig. 2. Composite 1 MW turbine power curve from three commercial tur-
ines.

esign, and to devise the control software of the energy man-
gement system.

In this paper, the method has been developed for stor-
ge and delivery of energy over a period of 24 h, reflecting
he diurnal nature of wind, solar and load variations. The
pproach can straightforwardly be extended to other time
cales, for example an hour or a week, and this is the subject
f ongoing research.

.1. Wind turbine modelling

A generic power curve for a 1 MW wind turbine has been
sed for the calculations presented here. This curve (Fig. 2)
as constructed from data for commercially available wind

urbines [4] and was previously used in [3] and [5]. The cut
n speed is 3 m s−1 and the rated wind speed at 13 m s−1 is
ypical of large modern turbines.

.2. Wind speed variations

The Van Der Hoven spectrum [6] describes wind speed
ariations up to 1000 h in duration. Corresponding spectra
ust be calculated from local wind speed data in order to

redict accurately the character of wind power variations
ig. 3. Wind speed variation spectra adjusted to 8 m s−1 mean wind speed.
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V = A2
i −

(
Ai

)2

[1 − cos(ω T )].
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.3. Solar irradiance variations

A spectrum has been calculated in a similar way for solar
rradiance (Fig. 4). Again, data from RAL has been used; the
pectrum will be broadly applicable to central England.

This spectrum for solar variation (not to be confused with
he solar electromagnetic spectrum) is dominated by peaks
eflecting seasonal variation, diurnal variation and harmonics
f the diurnal variation. These peaks are so large that they are
ot shown in Fig. 4, in order to reveal the broad remaining
tructure. The broadband spectrum from periods of months
own to minutes represents a significant random variation
n solar irradiance as big in percentage terms as that of the
ind spectrum over the same range of frequencies. The broad
ump of variation to the right of the diurnal peak represents
ariation due to passing clouds, while the tapered spectrum
o the left of the diurnal peak represents weather systems.

.4. Solar power modelling

The solar power output in kW was assumed to be equal
o the global horizontal irradiance in kW m−2 multiplied by
he peak PV efficiency and the array area. In a real system,
djustments should be made for the inclination and azimuthal
ngles of the PV panel; the effect of beam radiation should
e considered separately from that of diffuse radiation; tem-
erature and spectral (wavelength) effects should be taken
nto account; the characteristics of a maximum power point
racker and power converter should also be included. How-
ver, all these effects are of secondary magnitude and outside
he scope of this paper. The method presented here would be
uitable for a feasibility study where the approximate results
re sufficient for system sizing.

.5. Energy store modelling

The charging and discharging power ratings of the store
re unrestricted for the purposes of this model. The energy
ating of the store, and its behaviour are calculated using the

quations given in [5] and repeated below.

Filter functions have been applied to the spectra of wind
peed variations of Fig. 3, and of solar irradiance variations as
n Fig. 4, in order to calculate the probability distributions of

Fig. 4. Solar irradiance variation spectrum.
er Sources 162 (2006) 943–948 945

eriod–average wind speed and irradiance, the distributions
f wind speed and irradiance within each period, and the size
energy capacity) of the required store. For a given spectral
requency component, ωi with amplitude, A and phase angle
i, the instantaneous component is: Ui = Ai sin(ωiT + φi).
veraging this quantity over the store period, T gives the
ontribution from this frequency to the period–average wind
peed or irradiance:

¯
i = Ai

ωiT
[cos φi − cos(ωiT + φi)].

his average is then squared and integrated over all φi from
to 2π to give the contribution to the variance in the period

verage wind speed or irradiance. The resulting integral is:

1i =
(

Ai

ωiT

)2

[1 − cos(ωiT )].

This formula is the same as the low pass filter used by
nfield [7] for storage modelling, but without the 2.4 empiri-
al scaling factor. The filter for a 24 h store is shown Fig. 5.
ow frequency components (small ω) have a relatively large
ffect on the period average wind speed or irradiance whereas
igh frequency components (large ω) have a small effect
n the period average. Low frequency components remain
early constant throughout a time period, T. High frequency
omponents of wind or solar variation complete many cycles
uring the time, T, and time spent above the long-term mean
s approximately balanced by time spent below.

The variance of wind speeds or irradiance within a period,
is calculated in a similar way, but this time, the important

uantity is the difference between the instantaneous value,
i and the period-average,Ūi: Ui − Ūi = Ai sin(ωiT +
i) − (Ai/ωiT )[cos φi − cos(ωiT + φi)]. If this quantity is
quared, integrated over time, T and averaged over all possi-
le values of φi, then the component of variance within period
2i
2 ωiT

i

Fig. 5. Spectrum filter functions for a 24 h store.
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the average load is greater than 2 MW, it is never matched by
renewable energy, and the store size is again calculated on the
most windy and sunny days, when renewable energy is great-
est and therefore comes closest to satisfying the load. Since
46 J.P. Barton, D.G. Infield / Journa

his integral represents a high pass filter, previously derived
y Bossanyi [8] and also shown in Fig. 5. It is actually the
omplement of the low pass filter function in the sense that
umming the two time series resulting from application of the
wo filters to a given time series results in the original series.

A third filter function is used to calculate the variance
n state-of-charge of a store associated with a particular fre-
uency component, ωi. The accumulated energy added to
r subtracted from a store during period, T is the calculated
rom the integral of the difference between the instantaneous
alue, Ui and the period average, Ūi. But this time, the instan-
aneous accumulated energy is squared and integrated again
ith respect to both time and phase angle to give the average
ariance in the excursion of state-of-charge from its value at
he start of period, T:

SOC = A2
i

ω2
i

{
5

6
+ 1

6
cos(ωiT ) + 2

ω2
i T

2
[cos(ωiT ) − 1]

}
.

his third equation is applied to the original spectral den-
ity functions. Integration of the resulting filtered spectrum
ives the variance of wind speed × time or irradiance × time.
ow frequency components have little effect on the store,
ince their magnitude varies so little during period, T. High
requency components also have little effect on the store,
ince they complete many cycles during period, T, so each
ycle accumulates and discharges very little energy. Only
requency components close to the period of the store have a
ignificant effect on the state-of-charge (Fig. 5).

The wind speed × time is square-rooted and multiplied by
he average gradient from the turbine power curve to produce
standard deviation of state-of-charge due to wind speed vari-
tion. The irradiance × time is square-rooted and multiplied
y the solar PV peak capacity to produce another standard
eviation of state-of-charge due to solar irradiance variations.
third, diurnal standard deviation of state-of-charge results

rom the average daily profiles of load, wind speed and solar
rradiance. All three components of state-of-charge standard
eviation are added in quadrature to give the total standard
eviation in state-of-charge.

The effective energy capacity of the store is approximately
iven by twice the standard deviation of state-of-charge. The
actor of 2 is empirical (rather like the factor of 2.4 used by
nfield) but is intuitively the result of the symmetry about the
ean value mentioned above.

. Model validation

All the cases modelled using the probabilistic methods
ave been validated by a time–step method with the same
umerical inputs. The time–step method uses the same wind

peed time series and solar irradiance time series from which
he variation spectra were calculated. The time step method
lso uses the same time series of load data from which the
aily load profiles were prepared.
er Sources 162 (2006) 943–948

All wind speed distributions have been corrected to a long-
erm mean wind speed of 8 m s−1. The model is applied here
o a storage time scale of 24 h. This means that variations
n power flows within 1 day are accommodated by the store,
hereas, longer-term variations are not. Stored energy cannot
e transferred from one day to the next.

. Example results

The results presented here are for a stand-alone electric-
ty system supplying a time-varying load typical of a single
1 kV feeder in a UK Midlands town. The assumed electric-
ty system comprises 1 MW of wind power capacity, 2 MW
f solar PV capacity and an energy store of 75% efficiency
apable of smoothing out energy surpluses and deficits over
maximum period of 24 h.

The novel probabilistic method predicts the fraction of
ime that the store spends empty, full, emptying or filling.
t also predicts the energy lost when the store is full, the
nsatisfied demand when the store is empty, and the energy
apacity of the store required. To illustrate the versatility of
he probabilistic method, the load has been scaled between 0
nd 3.25 MW, and the results plotted in the following graphs.
low load represents an over-supply of renewable energy and
high load represents an under-supply of renewable energy.

The energy capacity of the store is calculated on days in
hich average supply is equal to, or closest to the average

oad (with an adjustment for the efficiency of the store), as
hese are the days when the store does the most ‘work’ of
mptying and filling. A small load, for example 0.25 MW is
atched by renewable energy on relatively calm or dull days

nd requires only a small store (Fig. 6). Conversely, a large
oad, for example 1.75 MW, is only matched by renewable
nergy on very windy and sunny days. These are also the
ays in which wind power and solar power are most variable.
herefore, a large load requires a large store size (Fig. 6). If
Fig. 6. Calculated store sizes for 24 h storage periods.
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Fig. 7. Load unsatisfied by renewable energy due to the store being empty.
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turbine of 390 kW. The long-term average renewable power
is therefore about 630 kW. Fig. 9 shows the power that would
enter or leave the store if it is assumed to be never full or
Fig. 8. Renewable power curtailed due to the store being full.

he wind and solar power variations have greater percentage
ariability than the load, and since the solar and wind power
ariances are already at their maximum values, the store size
oes not significantly increase, if at all, with increasing load
Fig. 6).

The probabilistic method predicts the excess load, the cur-
ailed power and power flows to and from the store very well,
s validated by time–step methods (Figs. 7–9).

The above graphs show that there is a critical average

oad, between 0.5 and 0.75 MW at which entering the store
s matched by power leaving the store. This is the load at
hich the store is doing most work and the load at which

ig. 9. Average power flows to and from the store (neglecting full and empty
ffects).
Fig. 10. Average power lost in charging and discharging the store.

he store loses most power due to its finite efficiency of 75%
Fig. 10).

This critical average load is close to the average supply of
enewable energy. The average measured solar irradiance at
AL is 118.8 W m−2, giving a solar capacity factor of 11.88%
nd an average solar power of 237.6 kW from the 2 kW of
olar capacity. The scaled average wind speed is 8 m s−1,
hich together with the turbine power curve produces a wind

apacity factor of 39% and an average power from a 1 MW
Fig. 11. Fraction of time that the store is empty.

Fig. 12. Fraction of time that the store is full.
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Fig. 13. Fraction of time that the store is emptying.
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Fig. 14. Fraction of time that the store is filling.

mpty (i.e. assumed to be of infinite size); the intersection of
he two curves indicates the point where the average power
ntering the store is exactly equal to average power leaving

he store, and that this is indeed at a load of about 630 kW.

The probabilistic method also calculates the fractions of
ime that the store is full, empty, filling or emptying. It does

Fig. 15. Load supplied by renewables, total and via the store.
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o by making simple assumptions about the cyclical nature of
harging and discharging, the probability distributions of net
ower to and from the store. It also makes use of the fact that
excluding large power excursions) renewable power is only
urtailed when the store is full and load is only unsatisfied
hen the store is empty (Figs. 11–14). In reality, the power
ows to and from the store are limited by the finite energy
apacity of the store. The predicted powers supplied to the
oad, in total and via the store, compare well with the time-
tep predictions (Fig. 15).

. Conclusions

It is clear from the graphs that the results of the new prob-
bilistic method are in excellent agreement with the time step
odel. No significant power is lost for average loads above
MW, despite the 3 MW of total renewable capacity. This

eflects the fact that the renewable sources are rarely pro-
ucing their combined rated output and that the bulk of the
ime-varying surplus is made useful by the storage system.
here is however a need for an “auxiliary supply” for all
ut the lowest loads, but this is easily accommodated by the
xisting electricity distribution system; indeed it is the normal
tate of affairs. It is not the intention here to make the local
oad completely independent of external supply, but rather to

ake better use of the distributed generation.
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